a2 United States Patent

Kushiro et al.

US009176490B2

US 9,176,490 B2
Nov. 3, 2015

(10) Patent No.:
(45) Date of Patent:

(54) CONTROL PROGRAM GENERATION
DEVICE, CONTROL PROGRAM
GENERATION PROGRAM, AND CONTROL
PROGRAM GENERATION METHOD

(75) Inventors: Noriyuki Kushiro, Tokyo (JP);
Masanori Nakata, Tokyo (JP); Yoshiaki
Ito, Tokyo (IP); Yoshiaki Koizumi,
Tokyo (JP)

(73) Assignee: Mitsubishi Electric Corporation,
Tokyo (JP)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 380 days.

(*) Notice:

(21) Appl. No.: 13/816,950

(22) PCT Filed: Jan. 26, 2011

(86) PCT No.: PCT/IP2011/051515

§ 371 (©)(1),
(2), (4) Date: Feb. 14, 2013

(87) PCT Pub. No.: W02012/023296
PCT Pub. Date: Feb. 23,2012

(65) Prior Publication Data
US 2013/0144409 A1 Jun. 6, 2013

(30) Foreign Application Priority Data

Aug. 16,2010 (IP) coooovoeveeececeeeeeee. 2010-181897
(51) Int.CL
GOGF 19/00
GO5B 15/02
GO5B 19/042
(52) US.CL
CPC ... GO5B 15/02 (2013.01); GOSB 19/0426
(2013.01); GOSB 2219/23008 (2013.01); GO5B
2219/23261 (2013.01); GOSB 2219/2614
(2013.01)

(2011.01)
(2006.01)
(2006.01)

(58) Field of Classification Search
CPC ... GOG6F 8/30; GO5B 19/02; GO5B 15/02
USPC oo 717/106, 108; 700/83
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5313,615 A * 5/1994 Newmanetal. 716/139
5,586,329 A * 12/1996 Knudsenetal. ... 717/108

(Continued)

FOREIGN PATENT DOCUMENTS

CN 101533349 A 9/2009
Jp 03-022002 A 1/1991
(Continued)
OTHER PUBLICATIONS

International Search Report of the International Searching Authority
mailed Mar. 8, 2011 for the corresponding international application
No. PCT/JP2011/051515 (with English translation).

(Continued)

Primary Examiner — Michael D Masinick
(74) Attorney, Agent, or Firm — Posz Law Group, PLC

(57) ABSTRACT

A control program generation device includes a control pro-
gram reuse library for storing a plurality of control modules,
and an architecture pattern library for storing a plurality of
units of pattern information representing architecture pat-
terns. In addition, the control program generation device cor-
relates and displays architecture patterns selected from the
architecture pattern library, program structure of control pro-
grams including the architecture patterns, execution times of
the control modules, and time constraints. Moreover, in addi-
tion, the control program generation device connects control
modules of the control program reuse library on the basis of
the program structure.

8 Claims, 23 Drawing Sheets

1
/1 00 / /200

CONTROL PROGRAM GENERATION DEVICE [«—»{ TESTING DEVICE

US 9,176,490 B2

Page 2

(56) References Cited Jp 07-152544 A 6/1995

P 08-278804 A 10/1996

U.S. PATENT DOCUMENTS Jp 10-161906 A 6/1998

P 2002-351509 A 12/2002

7,197,739 B2* 3/2007 Prestonetal. 717/106 P 2004-272718 A 9/2004

7,574,690 B2* 82009 Shahetal. 717/104 P 2009-015775 A 172009
7,684,892 B2* 3/2010 Yuanetal. 700/181
7,809,545 B2* 10/2010 Ciolfietal. 703/22
2004/0064804 Al* 4/2004 Daniels et al. 717/106

2008/0127057 Al* 5/2008 Costaetal. 717/106 OTHER PUBLICATIONS

2012/0260231 Al* 10/2012 Kawaba 717/106
2013/0232467 Al* 9/2013 Katsukura et al. 717/106 Office Action dated Mar. 25, 2015 issued in corresponding CN patent

application No. 201180039451.0 (and English translation).
FOREIGN PATENT DOCUMENTS

Jp 04-283802 A 10/1992 * cited by examiner

U.S. Patent Nov. 3, 2015 Sheet 1 of 23 US 9,176,490 B2

FIG.1A

1

v

/1 00 /200

CONTROL PROGRAM GENERATION DEVICE TESTING DEVICE

US 9,176,490 B2

Sheet 2 of 23

Nov. 3, 2015

U.S. Patent

a0
woor” 1
4
gsnow | | aavoaras | | auvo o3ain | | auvo nva | | @3T1081NOD Viaaw yISId QYVH
001" 0017 § 80017] 3001” s001” %} poot” 1
< \ 4 \ 4 \ 4 A
A A A
Y y
Wy nox ndo
02001” 001" 2oL~
001"

d19l4

U.S. Patent

Nov. 3, 2015

CONTROL PROGRAM
GENERATION PROCGESS

v £S01
| ACQUIRE DOMAIN INFORMATION |
¢ {SOZ

PERFORM CONTROL TO DISPLAY
THE DOMAIN INFORMATION IN A

LIST
v 503
AGQUIRE DOMAIN SELECTION
INFORMATION
Il £S04

READ PATTERN INFORMATION
THAT IS CORRELATED WITH THE
SELECTED DOMAIN
INFORMATION

It (505
PERFORM CONTROL TO DISPALY

A PATTERN LIST

1 £ S06
ACQUIRE PATTERN SELECTED
INFORMATION
I S07

SEARCH FOR STRUCTURE
DESCRIPTION INFORMATION
THAT IS CORRELATED WITH THE
SELECTED PATTERN
INFORMATION

I 508

PERFORM GONTROL TO DISPLAY
THE PROGRAM STRUCTURE OF
THE SELECTED PATTERN

Sheet 3 of 23

FIG.2

Qs

US 9,176,490 B2

@ £815

ACQUIRE
CONSTRAINT
INFORMATION?

ACQUIRE CONTROL
MODULES TO BE USED IN
THE DISPLAY PROGRAM

Yes /511 STRUCTURE
CONSTRAINT v 5516
DISPLAY CONNECT CONTROL

CONTROL MODULES, AND
PROCESS GENERATE A CONTROL
PROGRAM
| /S12 Il (S17
ACQUIRE TRANSMIT THE CONTROL
DESCRIPTION PROGRAM TO THE

INFORMATION? /]

TESTING DEVICE

¢Yes’(81 3 ¢ (S18
EDIT THE ACQUIRE VERIFIGATION
PROGRAM RANGE INFORMATION
STRUCTURE FOR THE GONTROL
BASED ON PROGRAM
DESCRIPTION 1 579
INFORMATION
SIMULATE THE
Jy ¢S14 OPERATION OF THE
SERFORM CONTROL PROGRAM
CONTROL TO WITHIN THE
DISPLAY THE VERIFICATION RANGE
EDITED i 520
PROGRAM REGEIVE TEST RESULT
STRUCTURE INFORMATION
v /S21

ANALYZE THE
SIMULATION RESULTS OR
TEST RESULTS

. ¢S09

IS THERE A CONTROL
PROGRAM GENERATION
INSTRUCTION

@Yes

No

v (522

PERFORM CONTROL TO
DISPLAY THE ANALYSIS

RESULTS

v
(END OF PROGESS)

US 9,176,490 B2

Sheet 4 of 23

Nov. 3, 2015

U.S. Patent

d3HINOOY N dIHINOOV 43uINOIV d3uINOIV
NOILVNHOSNI | | NOLLVINHOSNI
OILYWHOANI | | NOLLYWHOANI
NOLLIMOS3a| | LNIvaLsnoo || NOMLOITES NOLLOI 1S
d3TI0HLNOD NY3LLYd NIYWOQ
AV1dSIA
~ yGLr €g1" eI g1~
091 I
| dorvinwis
- WYdD0ud
SSh, co1” 5 ¥OL1103 WYHDOXd
d3HINDOV
NOILYWHOANI | ¥0LvoINNWWOD
JONVYH NOILYWHOANI oLL” \\f \\\H}
NOILVOI4IH3A
061" % AdvdEalT NOILYOI4I03dS Advyanr
IDVNONY] 3SM3Y AAVHElT
— _M_MMAVMM_MM mmwwww_%n_o NOILdIMOS3A JHNLONHLS VSO 04d Nd3Lllvd
= — NYYD0dd T0HLNOD T04.1NOD 34NLO3LIHOYY
081 0Ll
N N
oyl Hyll\\ yll\\
001~

VEOId

U.S. Patent Nov. 3, 2015 Sheet 5 of 23 US 9,176,490 B2

FIG.3B

EXECUTION
TIME
ESTIMATOR

v <112
SURPLUS TIME

CALCULATOR

v (113

PROGRAM
STRUCTURE
EDITOR

U.S. Patent

Nov. 3, 2015 Sheet 6 of 23

FIG.4A

DOMAIN PATTERN TABLE

DOMAIN ID | DOMAIN NAME [PATTERN ID
PO001
D00O01 BUILDING FIELD P0002
PO0O01

D0003

HOME FIELD

US 9,176,490 B2

US 9,176,490 B2

Sheet 7 of 23

Nov. 3, 2015

U.S. Patent

£000S NIFHOS—(IONTFHI43H)«—(FH0 LS)«—N33IH0S MO0 NOILYH3dO 9000d
INIVH1SNOO 3DNVY
£000S NIFHOS—(IONIFHI43H)«—(FHOLS)«—N33H0S THNLYSIdNIL L3S coood
J1VOINNWNOD«—(JWIL:NOILVHINID LNIAF)
¢000S —(3HOLS)—NITHOS 3FTNAIHOS -d3INIL ¥000d
1000S JLYOINNIWNOD—(3HOLS)—NITH0S N3I3HOS a31v13d NNINW| €000d
1000S 3LYOINNIWWNOD—(3HOLS)—N3THOS N33dOS TVIWHON ¢000d
1000S 31 VOINNWINOD«—(3HO1S)—N33H0S dO1S NOILYH3d0 1000d
dl NOILJIHOS3A JHNLONYLS SINIINOD NH3IL1lVd JNVN Nd311vd Al NH3L1vd

379V.L NOILdIH0S3d 34NLONYLS Nd311vd

ay'old

U.S. Patent Nov. 3, 2015 Sheet 8 of 23 US 9,176,490 B2

FIG.4C
STRUCTURE DESCRIPTION TABLE
STRUCTURE DESCRIPTION INFORMATION
STRUCTURE CONNECTION OTHER
DESCRIPTION ID|SPEGIFICATION ID DESTINATION ID INFORMATION
N00O1 NO0002 -
N0002 N0003 -
S0001 NO0O3 N0004 -
N0004 N0005 -
NO005 - -

U.S. Patent Nov. 3, 2015 Sheet 9 of 23 US 9,176,490 B2

FIG.4D

SPECIFICATION TABLE
SPECIFICATION ID|SPECIFICATION TYPE|OTHER INFORMATION

NOOO1 Function(Start) -

N0002 Function F0002
N0O003 Function F0003
N0004 Function F0004

N0O005 Function(End) -

U.S. Patent Nov. 3, 2015 Sheet 10 of 23 US 9,176,490 B2

FIG.4E

CONTROL MODULE TABLE

FUNCTION ID| FUNCTION NAME | CONTROL MODULE
F000T1 SCREEN F0001.a
F0002 STORE F0002.a
F0003 COMMUNICATE F0003.a

U.S. Patent Nov. 3, 2015 Sheet 11 of 23 US 9,176,490 B2

FIG.5A

FS

FW
”) s
STRUCTURE TEMPLATE WORK AREAP/
FP\ PARTS

N Function

Structure

Modifier /BT

Y . GENERATE

—

U.S. Patent Nov. 3, 2015 Sheet 12 of 23 US 9,176,490 B2

FIG.5B
STRUCTURE TEMPLATE

PATTERN NAME PATTERN CONTENTS
OPERATION STOP SCREEN—(STORE)—COMMUNICATE
NORMAL SCREEN SCREEN—(STORE)—COMMUNICATE

MENU RELATED SCREEN SCREEN—(STORE)—COMMUNICATE
SCREEN—(STORE)—

TIMER- SCHEDULE (EVENT GENERATION-TIME)—COMMUNICATE

SET TEMPERATURE
RANGE CONSTRAINT

OPERATION LOCK SCREEN—(STORE)—(REFERENCE)—SCREEN

SCREEN—(STORE)—(REFERENCE)—SCREEN

US 9,176,490 B2

Sheet 13 of 23

Nov. 3, 2015

U.S. Patent

60N

ol

FETITIIY

yeis

a|npayos a|npayos a|npayos
‘W ‘W ‘W
80N/ LoN” GON””
. A
31vadn 3LV1S o A|w
9ON” PON” |~ EON
N
. J
3|NPaYdS AS
0IN"

9Ol

Noz\

Poz\

U.S. Patent Nov. 3, 2015 Sheet 14 of 23 US 9,176,490 B2

N21
s
LINGUISTIC f E- Label Function: Start/Stop, EXTERNAL VARIABLE CONTROL,
ONTOLOGY --ae MACRO
N22 Structure;: CONTROL STRUCTURE
} BRANCH (BRANGCH CONDITION, TASK BRANCH), JUMP,
/N23 LOOP
W Label Wait for: WAIT (TIMER, SENSOR, MAIL, INTERNAL
--ane VARIABLE)
oN24
M: Label Modifier: DATA STORAGE (Read/Write)
(N25
C: Label Container: VALUE OPERATION (DATA + OPERATION)
N26
Reset Reset: RESET (CONTAINER, FUNCTION)
N2
Structure Value:CONDITION FOR CONTROL
SV:Label STRUCTURE (CONDITION BRANCH, NUMBER OF
TIMES, ETC.)
N28
L"iigél RCXtoRCX: DISPLAY, COMMUNICATION MESSAGE
N29
Exc:Label Exception:EXCEPTION PROCESSING
N30
O(Synchronization Point: NODE
/N31
H = 10ms Restricted Time: TIME CONSTRAINT
N32
<, >, = Value Restricted Time Value: TIME GONSTRAINT GONDITION
N33
-------’-)----b Process Control: Start, Kill, Halt, Reset

U.S. Patent Nov. 3, 2015 Sheet 15 of 23 US 9,176,490 B2

FIG.8A

N30a)/N21a N30b
F: A
F:-B > F: C

TIME CONSTRAINT: 3msec

b\

N31

R S
4

U.S. Patent Nov. 3, 2015 Sheet 16 of 23 US 9,176,490 B2

N30a ¢N21a ¢N21b N30b
Hé—» F: A » FB Hé—»
ESTIMATED ESTIMATED
i EXECUTION TIME EXECUTION TIME |
i 0.5 msec 0.5 msec E

il
-

Y

| TIME CONSTRAINT: 3msec

U.S. Patent Nov. 3, 2015 Sheet 17 of 23 US 9,176,490 B2

N30a /N21a /N21b /(N21c N30b
F: A P F:B » F: C
ESTIMATED ESTIMATED
EXECUTION TIME EXECUTION TIME SURPLUS TIME
2 msec
0.5 msec 0.5 msec

. SN

TIME CONSTRAINT: 3msec

S St

U.S. Patent

Nov. 3, 2015

LINGUISTIC
ONTOLOGY

| LooP
STRUCTURE

Sheet 18 of 23

FIG.9A

-Jf_wmm

Do—-While

US 9,176,490 B2

N41
')
A
N42
4
F:

EXP:

U.S. Patent Nov. 3, 2015 Sheet 19 of 23 US 9,176,490 B2

FIG.9B

')N51 ')N52
(P <O

U.S. Patent Nov. 3, 2015 Sheet 20 of 23 US 9,176,490 B2

FIG.10

CONSTRAINT INFORMATION
DISPLAY GONTROL PROGCESS

(S31
ESTIMATE THE FUNCTION EXECUTION
TIME
J, £S32

PERFORM CONTROL TO DISPLAY THE
FUNCTION EXEGUTION TIME

¢ 33
CALCULATE THE TOTAL OF ESTIMATED
EXECUTION TIME

v £S34
CALCULATE THE SURPLUS TIME BY
SUBTRACTING THE TOTAL ESTIMATED
EXECUTION TIME FROM THE CONSTRAINT

TIME
v £835
< IS THE SURPLUS TIME > 0 ?
yves 5837 I 536
PERFORM CONTROL TO DISPLAY THE PERFORM CONTROL TO DISPLAY AN
SURPLUS TIME ERROR MESSAGE
v 538
PERFORM CONTROL TO DISPLAY THE
ADDED STANDBY SPECIFICATION

l

A 4

(RETURN)

U.S. Patent Nov. 3, 2015 Sheet 21 of 23 US 9,176,490 B2

FIG.11A

PB1 PB3

PROBE N21 PROBE
(PROBE] naia Nz1o [PROGE

FA [T F:C ‘
N21 I
oN21d oN21f
» FD | F:F

U.S. Patent

US 9,176,490 B2

Nov. 3, 2015 Sheet 22 of 23
FIG.11B
FAT
A B C
F0001 F0002 F0003
D E F
F0004 F0005 F0006
G H
F0007 F0008

T:EXECUTION TIME

U.S. Patent

Nov. 3, 2015 Sheet 23 of 23 US 9,176,490 B2
/FAZ
Process A B C
P0001 F0001 F0002 FO003
EXECUTION TIME: EXECUTION TIME: EXECUTION TIME:
0.8msec 1.2msec 0.4msec
Process D E F
P0002 F0004 F0005 F0006
EXECUTION TIME: EXECUTION TIME: EXECGUTION TIME:
0.4msec 0.6msec 0.3msec
Process G H
P0O003 F0007 F0O008
W | EuTon ooy
EXPECTATIONS i 0.6msec 0.3msec
STIME CONSTRAINT:
1msec

T:EXECUTION TIME -

US 9,176,490 B2

1
CONTROL PROGRAM GENERATION
DEVICE, CONTROL PROGRAM
GENERATION PROGRAM, AND CONTROL
PROGRAM GENERATION METHOD

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a U.S. national stage application of
PCT/IP2011/051515 filed on Jan. 26, 2011, and claims pri-
ority to, and incorporates by reference, Japanese Patent
Application No. 2010-181897 filed on Aug. 16, 2010.

TECHNICAL FIELD

The present invention relates to a control program genera-
tion device, control program generation program and control
program generation method for controlling hardware.

BACKGROUND ART

Inrecent years, in order to develop products having various
specifications in a short period of time, product line develop-
ment is performed. In this product line development, a range
of'use of a product to be developed is specified as a domain,
and the portions that have functions that are common among
a plurality of other products that belong to the specified
domain are reused (in other words, appropriated), and by only
performing development for portions that have functions that
are not in common with other products (in other words, dif-
ferences), the development efficiency for developing a prod-
uct is improved.

A method has been proposed in which in order to reuse a
software program that has been developed in this way during
the development of new products, a plurality of programs are
selected from a plurality of memories that store programs for
performing specified operations on a specified electrical
device based on a series of operating procedures that are
executed by that electrical device, and by linking together the
selected plurality of programs, an execution program for a
microprocessor that controls that electric device is automati-
cally generated (for example, refer to Patent Literature 1).

Moreover, in order to aid in the creation of a diagram that
isused in the design of a program, a system has been proposed
in which contradictions that occur between different kinds of
diagrams are verified based on known relationships between
various diagrams that are used in designing a certain program
and other kinds of programs that are used in designing other
programs (for example, refer to Patent Literature 2).

Furthermore, a software execution device is proposed that,
together with using a computer to virtually form hardware
that is controlled by the generated control program, causes the
timing of operation of the formed virtual hardware and the
timing of operation of the control program that is executed by
the virtual hardware to correspond with the timing of actual
operation (for example, refer to Patent Literature 3).

PRIOR ART LITERATURE
Patent Literature

Patent Literature 1: Unexamined Japanese Patent Application
Kokai Publication No. H04-283802

Patent Literature 2: Unexamined Japanese Patent Application
Kokai Publication No. H07-152544

10

15

20

25

30

35

40

45

50

55

60

65

2

Patent Literature 3: Unexamined Japanese Patent Application
Kokai Publication No. H10-161906

DISCLOSURE OF THE INVENTION
Problem to be Solved by the Invention

However, in the method disclosed in Patent Literature 1,
programs are not generated based on a basic program design
(in other words, architecture). Therefore, even when generat-
ing a program that has a common architecture pattern with a
program that has already been generated, it is not possible to
reuse an architecture pattern that has already been created and
for which reliability has been maintained through actual use,
so that it was not possible to efficiently develop a program
having high reliability.

Moreover, in the system disclosed in Patent Literature 2, no
method is disclosed for describing the program structure.
Therefore, there was difficulty for the program designer to
recognize the program structure, and difficulty for reuse of
program modules and architecture.

Furthermore, in the software execution device that is dis-
closed in Patent Literature 3, it is not possible to display time
constraints that are imposed on a control program or the
execution time of control modules of a control program.
Therefore, there was difficulty for the designer to know what
kind of control modules to reuse when creating a control
program, and difficulty generating a program that satisfied the
time constraints, and difficulty reusing program modules and
architecture.

In consideration of the situation described above, the
objective of the present invention is to provide a control
program generation device, a control program generation
program and a control program generation method capable of
efficiently generating a highly reliable control program for
controlling hardware by reusing program modules and archi-
tecture.

Means for Solving the Problem

In order to accomplish the object of the invention described
above, the control program generation of the present inven-
tion is provided with:

a control module memory that stores a plurality of control
modules that control the operation of hardware;

a pattern information memory that stores a plurality of
pattern information that indicates architecture patterns,
which are the program structures that are common with the
architecture of a control program that is composed of one or
more of the plurality of control modules;

a pattern selection information acquirer that acquires pat-
tern selection information for selecting the stored pattern
information;

a constraint information acquirer that acquires constraint
information that indicates a time constraint that is imposed on
a control program including architecture patterns that are
indicated by the pattern information selected according to the
pattern selection information;

a display controller that causes the architecture indicated
by the selected pattern, the program structure of the control
program including the architecture pattern, the execution
time of the control modules of the control program, and the
time constraints indicated by the acquired constraint infor-
mation to be correlated and displayed on a display;

a description information acquirer that acquires descrip-
tion information that describes changes to the program struc-
ture of the control program;

US 9,176,490 B2

3

a program editor that edits the program structure of the
control program based on the acquired description informa-
tion; and

a program generator that generates a control program for
controlling hardware by connecting control modules that are
stored in the control module memory based on the edited
program structure.

Effects of the Invention

The control program generation device, control program
generation program and control program generation method
of'the present invention is capable of efficiently generating a
highly reliable control program for hardware.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1A is a system configuration diagram illustrating an
example of a system that is composed of a control program
generation device of an embodiment of the present invention,
and FIG. 1B is a hardware configuration diagram illustrating
an example of the construction of a control program genera-
tion device;

FIG. 2 is a flowchart illustrating an example of the control
program generation process that the control program genera-
tion device executes;

FIG. 3A is a block diagram illustrating an example of
functions of the control program generation device, and FIG.
3B is a diagram illustrating an example of the construction of
a program editor;

FIG. 4A is a diagram illustrating an example of a domain
pattern table, FIG. 4B is a diagram illustrating an example of
a pattern structure description table, FIG. 4C is a diagram
illustrating an example of a structure description table, FIG.
4D is a diagram illustrating an example of a specifications
table, and FIG. 4E is a diagram illustrating a control module
table;

FIG. 5A is a diagram illustrating an example of an editing
screen, and FIG. 5B is a diagram illustrating an example of a
structure template display area;

FIG. 6 is a diagram illustrating an example of program
structure;

FIG. 7 is a diagram illustrating an example of linguistic
ontology (specifications);

FIG. 8A is a diagram for explaining in detail node specifi-
cations and constraint specifications, FIG. 8B is a diagram
illustrating an example of a display of the execution time of a
control module, and FIG. 8C is a diagram illustrating an
example of a display of the surplus time;

FIG. 9A is a diagram illustrating an example of linguistic
ontology (specification) that illustrates the repeating structure
of processing, and FIG. 9B is a diagram illustrating an
example of linguistic ontology (specification) that illustrates
a multiple input process or multiple output process;

FIG. 10 is a flowchart illustrating an example of a con-
straint information display control process that is executed by
the control program generation device; and

FIG. 11A is a diagram illustrating an example of a verifi-
cation range, FIG. 11B is a diagram illustrating an example of
an analysis result display screen, and FIG. 11C is a diagram
illustrating another example of an analysis result display
screen.

MODE FOR CARRYING OUT THE INVENTION

In the following, a control program generation system 1
that is composed of a control program generation device 100

10

15

20

25

30

35

40

45

50

55

60

65

4

of'an embodiment of the present invention will be explained
with reference to the accompanying drawings.

The control program generation system 1 includes a con-
trol program generation device 100 as illustrated in FIG. 1A,
and a testing device 200.

First, before explaining about the control program genera-
tion device 100, the testing device 200 will be explained.

The testing device 200 is composed, for example, of a
controller for an air conditioner (hereafter called air condi-
tioning), and is connected to the control program generation
device 100 and air conditioning (not illustrated in the figure).
The testing device 200 is a device that controls hardware,
such as an air-conditioner, by executing a control program
that is generated by the control program generation device
100, and has a function added for testing a control program.
This testing device 200 receives a control program from the
control program generation device 100, and executes testing
of the received control program. After that, when testing is
finished, the testing device 200 returns the testing analysis
results information that indicate the test results to the control
program generation device 100. This testing analysis results
information includes information for example that correlates
the module ID or module name that identifies the control
module constituting the control program with execution time
information that indicates the time at which the control mod-
ule is executed.

The execution time of the control module includes the
execution starting time and the execution ending time, and the
test results include the module ID or module name that iden-
tifies the control module, and the execution period from the
execution starting time to the execution ending time of the
control module. Moreover, the test results can also further
include the execution time and variables for the control mod-
ule during that execution time.

Moreover, the device is not limited to an air-conditioning
controller, and could also be a controller that controls hard-
ware such as an elevator, lighting, parking station, and secu-
rity devices and the like that are used in a building, or could be
a controller that controls hardware such as a solar generator,
air conditioner, floor heater, water heater, ventilation device,
security device and the like that are used in a home.

The control program generation device 100, as illustrated
in FIG. 1B, includes a CPU (Central Processing Unit) 100q, a
ROM (Read Only Memory) 1005, a RAM (Random Access
Memory) 100c¢, a hard disk 1004, a media controller 100e,
LAN (Local Area Network) card 100/, a video card 100g, a
LCD (Liquid Crystal Display) 100/, a keyboard 100i, and a
pointing device (hereafter, referred to as a mouse) 100;.

The CPU 100a performs overall control of the control
program generation device 100 by executing software pro-
cessing (in other words, information processing) according to
a program that is stored in the ROM 1005 or on the hard disk
100d. The RAM 100c¢ temporarily stores information (in
other words, data) that is the object of processing at the time
of execution of the program by the CPU 100a.

The hard disk 1004 stores a table in which various infor-
mation (in other words, data), such as will be described later,
is saved. The control program generation device 100 may also
include a flash memory instead of a hard disk 1004.

The media controller 100e reads various data and programs
from storage media. Storage media includes a flash memory,
CD (Compact Disc), DVD (Digital Versatile Disc), and blu-
ray disc.

The LAN card 100f exchanges data and commands with
the testing device 200 that is connected by way of a commu-
nication network 10.

US 9,176,490 B2

5

The video card 100g draws (in other words, renders) an
image based on a digital signal that is outputted from the CPU
100a, and outputs an image signal that represents the ren-
dered image. The LCD 100/ displays an image according to
an image signal that was outputted from the video card 100g.
The control program generation device 100 can also include
a PDP (Plasma Display Panel) or EL (Electroluminescence)
display instead of the LCD 1004.

The keyboard 100; and mouse 100; input signals according
to user operation. The control program generation device 100
can also include a touch panel instead of a keyboard 100; and
mouse 100;.

Next, processing that is executed by the control program
generation device 100 will be explained.

The CPU 100a of the control program generation device
100, by executing the control program generation process in
FIG. 2, functions as a program editor 110, an architecture
pattern library (hereafter, referred to as the pattern informa-
tion memory) 120, a control program reuse library (hereafter,
referred to as a control module memory) 130, a control pro-
gram structure description language specification library
(hereafter, referred to as a description information memory)
140, domain selection information acquirer 151, pattern
selection information acquirer 152, constraint information
acquirer 153, description information acquirer 154, verifica-
tion range information acquirer 155, display controller 160,
program generator 170, information communicator 180, pro-
gram simulator 190 and operation analyzer 195 as shown in
FIG. 3A.

When execution of the control program generation process
in FIG. 2 begins, the program editor 110 acquires domain
information, which indicates the domain of the hardware that
is controlled by the control program that is generated by the
program generator 170, from a domain pattern table such as
illustrated in FIG. 4 A, which is one ofa plurality of tables that
are stored in the pattern information memory (in other words,
the architecture pattern library) 120 in FIG. 3A (step S01).

Here, the domain is a range in which the hardware is used.
For example, in the case of the hardware being an elevator, air
conditioning, lighting, parking station, or security device, the
hardware is used in a building. Therefore, the domain for this
kind of hardware includes the building field. Also, for
example, in the case where the hardware is a solar power
generator, air conditioner, ventilation device, water heater or
security device, this kind of hardware is used in a typical
home. Therefore, the domain of this kind of hardware
includes the home field. The domain pattern table in FIG. 4A
stores information that indicates domain names and domain
IDs that identify domains as domain information, and the
fields of buildings and homes are included in the domain
names.

Next, the display controller 160 in FIG. 3A controls the
LCD 100/ in FIG. 1A so as to display a list of domain names
indicated in the domain information that was acquired by the
program editor 110 (step S02).

Next, the domain selection information acquirer 151 in
FIG. 3 A acquires domain selection information that indicates
the domain that was selected by one of the keyboard 100; and
mouse 100; that is operated by the user (in other words, the
control program developer) from the displayed domain
names as the domain of the control program that is generated
(hereafter, referred to as the selected domain) (step S03). For
example, in the case of generating a control program that
controls hardware that is used in a typical home, for example,
the home field is selected as the domain.

Next, the program editor 110 searches for one or more
items of pattern information that is correlated with the

10

15

20

25

30

35

40

45

55

60

65

6

domain information that indicates the selected domain that
was acquired in step S03 (hereafter, referred to as selected
domain information) from the domain pattern table in FIG.
4A (step S04). Here, the pattern information includes a pat-
tern 1D that identifies a pattern, information that indicates the
pattern name, and information that indicates the pattern con-
tents.

The term pattern that is used in this specification refers to
an architecture pattern, which is the program structure that is
common with the architecture of the control program that is
used in a certain domain (hereafter, referred to as common
structure). Architecture is the basic structural design of a
program.

The program editor 110, in step S04, searches for a pattern
ID based on the selected domain information, and searches
for information that indicates the pattern name that is corre-
lated with the pattern ID that was found, and information that
indicates the pattern contents from the pattern structure
description table in FIG. 4B, which is one of the plurality of
tables stored in the pattern information memory (in other
words, the architecture pattern library) 120 in FIG. 3A.

After step S04 in FIG. 2, the display controller 160 in FIG.
3A, based on the information found by the program editor
110, generates a list of one or more pattern names and pattern
contents that are identified by the pattern ID that is correlated
with the domain ID of the selected domain, and then controls
the LCD 100/ so as to display the generated list in the struc-
ture template display area FS of the edit screen F such as
illustrated in FIG. 5A (step S05). Often a plurality of hard-
ware that is used by a certain domain has common functions,
so often the basic design of the control programs that controls
that plurality of hardware is common (in other words, the
programs have common architecture).

The edit screen F is a screen on which the program struc-
ture of the control program and the editing contents for the
program structure are displayed. Moreover, the structure tem-
plate display area FS of the edit screen F is an area where the
pattern name and pattern contents of an architecture pattern,
which will become an example (in other words, a template) of
program structure that is common to the control programs
that belong to the selected domain, are displayed as illustrated
in FIG. 5B.

The icons IC on the edit screen F are correlated to com-
mands for performing, for example, navigation displays that
provide guidance for the work procedure for creating control
programs using the edit screen F, help screen, or simulation
results summary screen that will described later.

In explaining in detail the architecture pattern that is dis-
played in the structure template display area FS in FIG. 5B,
the pattern contents of an architecture pattern called “Opera-
tion Stop”, has a program structure in which first a process
displays a specified “screen” such as control screen for hard-
ware such as a controller, then after a touch operation of the
operation stop button that is displayed on the control screen is
detected, an intermediate process “stores” a value that indi-
cates operation stop for a parameter that indicates the opera-
tion stop state, and a final process “communicates” a com-
mand for stopping operation to the hardware.

After step SO05 in FIG. 2, the pattern selection information
acquirer 152 acquires pattern selection information for select-
ing an architecture pattern from an input device operated by
the user; and this architecture pattern is the pattern of the
displayed pattern name, and is used as the architecture of the
control pattern that will be generated (step S06).

Next, the program editor 110 searches for the structure
description ID, which is correlated with the pattern ID of the
selected ID that was selected using the pattern selection infor-

US 9,176,490 B2

7

mation that was acquired in step S06, from the pattern struc-
ture description table in FIG. 4B. The program editor 110 then
searches for structure description information, which is cor-
related with the structure description ID that was found, from
a structure description table such as illustrated in FIG. 4C,
which is one of the tables that are stored in the pattern infor-
mation memory (in other words, architecture pattern library)
in FIG. 3A (step S07).

Here, the structure description 1D is information that iden-
tifies the structure description, and structure description
information is information that indicates the structure
description. Moreover, the structure description in this
embodiment is the description of the program structure this is
indicated using program structure description language,
which is a special language for describing program structure.

Here, referring to FIG. 6, an example of the program struc-
ture that is described using program structure description
language will be explained.

The program structure in FIG. 6 is program structure of a
control program that is executed by a controller that controls
air conditioning. This control program is a program that, 10
seconds after the controller has been activated, executes the
air conditioning controls that are stored in a schedule list one
atatime, and updates a variable that indicates the control state
of the air conditioning.

The program structure in FIG. 6 is expressed by the lin-
guistic ontology (hereafter, simply referred to as specifica-
tions) NO1 to N11. Specification N01 indicates the starting
point of the program function. Specification N02, which is
linked by the arrow going from specification N01 to specifi-
cation N02, indicates performing a waiting process (hereaf-
ter, referred to as a standby process) for the number of sec-
onds indicated by the number that is given inside the square
shape below (in other words, “10” seconds).

Specification NO03 that is connected by the arrow going
from specification N02 toward specification NO03 indicates
performing some conditional branch after processing of
specification N02. Similarly, specification N04 indicates per-
forming some conditional branch after the processing of
specification N03. Specification N05 that is connected by the
line segment that connects specification N04 and specifica-
tion NO5 indicates storing (in other words, data storage) a
variable value for the variable “Schedule”, which indicates
the element number on the schedule list that is used in the
judgment process for the conditional branch of specification
No4.

The arrow with the character “N” attached on the right side
and that returns from specification N04 toward specification
NO3 indicates that, when the judgment result at the condi-
tional branch in specification N04 is “False”, the processing
of specification N03 is repeated again. On the other hand,
specification N06 that is connected by the arrow with the
character “Y” attached underneath and that goes from speci-
fication N04 to specification N06 indicates executing a func-
tion for updating the air conditioning control state in the case
when the judgment result at the conditional branch in speci-
fication N04 is “True”. Specification N07 that is connected by
the line segment that connects specification N06 and specifi-
cation NO7 indicates storing a variable value for the variable
“Schedule” that is used in specification N06. Specifications
NO08 and N09 are the same as specifications N07 and N04,
respectively, so explanations of them are omitted.

Specification N10 with the character “N” underneath and
connected by an arrow going from specification N09 towards
specification N10 indicates a process of incrementing the

20

40

45

65

8

value of the variable “Schedule” by “1” in the case when the

judgment result at the conditional branch in specification N09

is “False”.

The arrow going from specification N10 toward specifica-
tion NO3 indicates that after the processing of specification
N10, the processing of specification NO03 is repeated again.
Moreover, specification N11 that is connected with an arrow
with the character “Y”” underneath and that goes from speci-
fication N09 towards specification N11 indicates that, when
the judgment result at the conditional branch in specification
N09 is “True”, execution of the function process ends. The
specifications can be recursively given. In other words, a
specification indicating a function can also be expressed as a
plurality of specifications indicating a plurality of functions
that are included in a function.

Here, linguistic ontology (in other words, specifications)
that indicates the program structure is not limited to the speci-
fications NO1 to N11 illustrated in FIG. 6. For example, as
illustrated in FIG. 7, specification N25 that indicates value
operation processing (in other words, arithmetic processing
of data), specification N26 that indicates reset processing,
specification N28 that indicates message communication
processing, specification N29 that indicates exception pro-
cessing, specification N30 that indicates a node (in other
words, a synchronization point), specification N31 that indi-
cates a time constraint that is imposed on the execution time
of a control program, or on the total execution time of a
plurality of control modules of a control program, and speci-
fication N32 that indicates time constraint conditions, and
specification N33 that indicates process control are included.
Specification N21 to specification N24, and specification
N27 were already explained in FIG. 6, so redundant explana-
tions are omitted.

Next, specification N30 that indicates a node in FIG. 7
(hereafter, referred to as a node specification), and specifica-
tion N31 thatindicates a time constraint (hereafter, referred to
as a constraint specification) will be explained in detail with
reference to FIG. 8A.

The program structure that is illustrated in FIG. 8A is
expressed by specifications N21a to N21¢ that indicate func-
tions (hereafter, referred to as function specifications), node
specifications N30a and N30b, and constraint specification
N31.

1. There are two arrows leading from the node specification
N30a, so node specification N30a indicates fork process-
ing that generates two processes. The top arrow from node
specification N30qa leads to function specification N21a
and then leads to node specification N30b. On the other
hand, the bottom arrow from node specification N30a leads
in order to functions specifications N215 and N21¢, and
then leads to node specification N30b. Therefore, node
specification N304 indicates a process that waits for (or in
other words, synchronizes) the end of execution of the
processing of function specification N21a, and the pro-
cessing of function specification N215 and function speci-
fication N21¢. Moreover, constraint specification N31 uses
the dotted line that extends from the node specification
N30a and the dotted line that extends from the node speci-
fication N304 to indicate a time constraint that is imposed
on the control program for the completion in 3 msec of
execution from the processing of node specification N30a
to the processing of node specification N304 (in other
words, the throughput becomes 3 msec).

With this construction, it is possible to clarify the constraint
(in other words, time constraint) imposed on the execution
time of the control program that is set by the hardware that is
the object of control.

US 9,176,490 B2

9

It is also possible for linguistic ontology (in other words,
specifications) that expresses program structure to express
structure for repeating a process (in other words, loop struc-
ture) as in specification N41 that indicates a “while state-
ment” illustrated in FIG. 9A, specification N42 that indicates
a “Do-while statement”, and specification N43 that indicates
a “For statement”.

Moreover, linguistic ontology can also include as illus-
trated in FIG. 9B a specification N51 that indicates a process
for inputting structure (in other words, Structure Value) (in
other words, multiple input process), and specification N52
that indicates a process of outputting structure (in other
words, multiple output process).

Returning to FIG. 2, the control program generation pro-
cess will continue to be explained from step S07.

In step S07, the structure description table in FIG. 4C that
is used in the search is a table that correlates and stores
structure description IDs, and structure description informa-
tion that indicates structure descriptions that are identified by
the structure IDs. The structure description information of the
structure description table is information that correlates a
specification ID that identifies a specification (in other words,
linguistic ontology), a specification ID (hereafter, referred to
as a connection destination ID) of a specification (or in other
words, connection destination) that is connected by an arrow
that extends from the specification, and other information that
includes branch conditional information that, when a speci-
fication indicates a conditional branch, indicates “Y” or “N”
on the side of the arrow.

This specification ID is correlated with specification infor-
mation that indicates a specification, and is saved in the speci-
fication table in FIG. 4D, which is one of a plurality of tables
that are stored by the description information memory (in
other words, control program structure description language
specification library) 140 in FIG. 3A. The specification infor-
mation is other information that is necessary for indicating
the type of specification that was explained with reference to
FIG. 6 to FIG. 9, and the processing of each specification
type. For example, when the specification indicates a func-
tion, the other information indicates the name of the function,
and when the specification indicates a time constraint, the
other information indicates the constraint time and a plurality
of specifications for that constraint.

Returning to FIG. 2, the control program generation pro-
cess will continue to be explained.

After step S07, the display controller 160 in FIG. 3A con-
trols the LCD 100/ in FIG. 1B so as to display the program
structure of the selected pattern in the work area FW of the
edit screen F in FIG. 5A based on the structure description
information that was found by the program editor 110 (step
S08).

Next, by the user operating the mouse 1005 in FIG. 1B for
example, a cursor that is displayed on the LCD 100/ is moved
over abutton BT that is displayed in the work area FW in FIG.
5A, and then, based on a signal that is inputted from the
mouse 1005 by a clicking operation performed by the user, the
program generator 170 in FIG. 3A determines whether or not
an instruction was given to generate a control program (step
S09).

In step S09, when the program generator 170 determines
that there was no instruction to generate a control program
(step S09: NO), the program editor 110 determines whether
or not the constraint information acquirer 153 in FIG. 3
acquired constraint information and object information from
the input device that was operated by the user (step S10). The
constraint information is information that indicates a time
constraint that is imposed on the execution time for a control

10

15

20

25

30

35

40

45

50

55

60

65

10

program that is being generated, or a time constraint for the
total execution time of a function that is expressed by a
plurality of control modules that are executed in order of a
control program that is being generated. The object informa-
tion is information that indicates a control program or func-
tion for which a time constraint has been imposed.

In step S10, when the program editor 110 determines that
constraint information has been acquired, a constraint infor-
mation display control process is executed as illustrated in
FIG. 10 (step S11).

After the constraint information display control process in
FIG. 10 has begun, an execution time estimator 111 of the
program editor 110 as illustrated in FIG. 3B identifies control
modules that indicate function processes from a control mod-
ule table as illustrated in FIG. 4E based on the function ID or
function name of each function for which the time constraint
indicated by the acquired constraint information is imposed.
The control module table is one of a plurality of tables that are
stored in the control module memory (in other words, control
program reuse library) 130 in FIG. 3A.

Next, the execution time estimator 111 estimates the
execution time of a function based on, for example, the num-
ber of steps within each identified control module and the
performance (in other words, the CPU performance) of the
device that executes the control program that is expressed by
the information that was inputted from the input device (step
S31). The display controller 160 then controls the LCD 100/
so as to correlate the estimated execution time with the func-
tion specification that corresponds to the control module, and
display the estimated execution time (step S32). After that,
the execution time estimator 111 calculates the total execu-
tion time for one or more control module for which the time
constraint is imposed (step S33).

Next, a surplus time calculator 112 of the program editor
110 illustrated in FIG. 3B calculates surplus time by subtract-
ing the total estimated execution time that was calculated in
step S33 from the time constraint that is indicated by the
constraint information (step S34). A program structure editor
113 of the program editor 110 illustrated in FIG. 3B then
determines whether or not the calculated surplus time is a
positive value (step S35).

In step S35, when the program structure editor 113 deter-
mines that the surplus time is a negative value (step S35: NO),
the display controller 160 in FIG. 3A controls the LCD 100/
in FIG. 1B so as to display the surplus time and display an
error message that the time constraint is violated (step S36).
After that, execution of the constraint display control process
is ended.

In step S35, when the program structure editor 113 deter-
mines that the surplus time is a positive value (step S35: YES),
the display controller 160 in FIG. 3A controls the LCD 100/
in FIG. 1B so as to display the surplus time (step S37). The
program structure editor 113 then searches for a control mod-
ule, which performs processing that does not perform control
of hardware that is the object of control, nor that performs
control processing that causes the hardware to wait for just the
surplus time (in other words, standby processing), from the
control module memory (in other words, control program
reuse library) 130 in FIG. 3A. Next, the program structure
editor 113 adds a specification that indicates a function that is
executed using the control module that was found at the
beginning, middle or end of the execution order of a plurality
of specifications on which the time constraint is imposed.
After that, the display controller 160 controls the LCD 100/
so as to display the added specification (step S38). Execution
of the constraint display control process then ends.

US 9,176,490 B2

11

As adetailed example, an example is explained in which, as
illustrated in FIG. 8B, specification N21a and specification
N21bare described as being between specifications N30a and
N304, and a time constraint is imposed such that function A
that is indicated by specification N21a and function B that is
indicated by N215 must be executed within a total execution
time of 3 msec. In this case, the execution time estimator 111
estimates that the execution time for function A and the
execution time for function B are both “0.5” msec, and cal-
culates the total estimated execution time to be “1” msec.
Next, the display controller 160 controls the LCD 100/ so as
to display the estimated execution time “0.5” msec at a dis-
play position a specified amount below the specification
N21a that indicates function A, and at a display position a
specified amount below the specification N215 that indicates
function B.

Next, the surplus time calculator 112 subtracts the total of
the estimated execution time for function A and the estimated
execution time for function B, which is “1” msec, from the
time constraint of “3” msec, and calculates the surplus time to
be “2” msec. The display controller 160 can also perform
display control such that specification N21a and function B
are correlated, and that the total execution time of ““1” msec is
displayed.

After that, the program structure editor 113, as illustrated
in FIG. 8C, adds a specification N21c¢ that indicates a standby
process to be executed for “2” msec after specification N21a
and specification N215 and before specification N30b, and
the display controller 160 controls the LCD 100/ so as to
display the surplus time of “2” msec at a display position a
specified amount below the specification N21c¢. The specifi-
cation N21¢ that indicates a standby process can also be
added before specification N21a and specification N21b, or
could be added between specification N21a and specification
N21b.

Afterstep S11in FIG. 2, the program editor 110 determines
whether or not the description information acquirer 154 in
FIG. 3A acquired description information, which describes
changes to the displayed program structure, from an input
device that is operated by the user (step S12).

The parts display area FP of the edit screen illustrated in
FIG. 5 is an area in which the linguistic ontology (in other
words, specifications) stored in the description information
memory (in other words, control program structure descrip-
tion language specifications library) 140 in FIG. 3A is dis-
played, and by the user operating an input device, linguistic
ontology that is displayed in the parts display area FP is
dragged and dropped into the work area FW where the pro-
gram structure is displayed, the dropped specifications are
edited, and description information that describes changes to
the program structure is input to the input device.

In step S12, when the program editor 110 determines that
description information has not been acquired (step S12:
NO), processing returns to step S09 and the above processing
is repeated. On the other hand, when the program editor 110
determines that description information has been acquired
(step S12: YES), the program editor 110 edits the displayed
program structure based on the acquired description informa-
tion (step S13). After that, the display controller 160 controls
the LCD 1007 so as to display the edited program structure
(step S14). Processing then returns to step S09 and the above
processing is repeated.

In step S09, when the program generator 170 determines
that there was an instruction to generate a control program
(step S09: YES), the program generator 170 uses the specifi-
cations table in FIG. 4D that has already been explained and
the control module table in FIG. 4E to acquire a control

10

15

20

25

30

35

40

45

50

55

60

65

12

module that is to be used in the program structure that is
displayed (hereafter, referred to as displayed program struc-
ture) from the control module memory (in other words, con-
trol program reuse library) 130 in FIG. 3A (step S15). More-
over, based on displayed specifications, the program
generator 170 generates a control module that cannot be
acquired (in other words, a new control module that cannot be
reused). Next, the program generator 170 generates a control
program by connecting acquired control modules based the
displayed program structure (step S16).

The program generator 170, for example, correlates 1D
information that identifies the control program that was gen-
erated based on the displayed specifications, or information
that indicates the program name with constraint information
and object information that is indicated by the displayed
specifications, and stores the results in the description infor-
mation memory 140 in FIG. 3.

After that, the information communicator 180 in FIG. 3A
transmits the generated control program to the testing device
200 (step S17). The testing device 200 installs the transmitted
control program and executes a testing mode for testing the
installed program. The testing device 200 executes the control
program in the testing mode, and stores test results informa-
tion, which indicates the execution results in which the execu-
tion state of the control program is correlated with the execu-
tion time, in a memory of the testing device 200. In this
embodiment, the execution results include the execution time
of'the control program, ID information or name that identifies
a control module of the control program, or ID information
(in other words, function ID) or name (in other words, func-
tion name) that identifies the function of that control module,
and an ID that identifies the process that is executed by the
control module. After that, the testing device 200 transmits
the test result information to the information communicator
180.

Instep S17, the verification range information acquirer 155
in FIG. 3A acquires verification range information, which
indicates the verification range for verifying execution of the
control program, from an input device that is operated by the
user (step S18).

As a detailed example, an example is explained in which
the program structure of the generated control program is
expressed by specifications N21a to N21% as illustrated in
FIG. 11A. By operating an input device in order to specify the
verification range, the user inserts probes as illustrated in F1G.
11A into positions between specifications N21a to N214. For
example, when the user inserts probe PB1 before specifica-
tions N21a, N21d and N21g, and probe PB2 after specifica-
tion N21e and N214, the verification range is from the start of
the processing indicated by specification N21d to the end of
processing indicated by specification N21e for one thread,
and from the start of the processing indicated by specification
N21g to the end of processing indicated by specification
N21/ for another thread.

Also, for example, when the user inserts probe PB1 before
specifications N21a, N21d and N21g, and probe PB3 after
specification N21c¢ and N21f, the verification range is from
the start of the processing indicated by specification N21a to
the end of processing indicated by specification N21c¢ for a
first thread, from the start of the processing indicated by
specification N21d to the end of processing indicated by
specification N21f for a second thread, and from the start of
the processing indicated by specification N21g to the end of
processing indicated by specification N21/ for a third thread.

After step S18 in FIG. 2, the program simulator in FIG. 3A
forms virtual hardware by executing a simulation program
that simulates the hardware that is the object of control. Next,

US 9,176,490 B2

13

by executing the generated control program in the verification
range that is indicated by the verification range information,
the program simulator 190 simulates the control operation for
controlling the virtual hardware (step S19). When simulating
the control operation of the control program, the program
simulator 190 generates simulation results information that
indicates the simulation results.

More specifically, of the functions that are included in the
verification range that is indicated by the verification infor-
mation that was acquired in step S18, the program simulator
190 identifies the function that is earliest in the execution
order, and the function that is the latest in the execution order.
Next, as initial values, the program simulator 190 replaces the
variable values that are used for executing the control pro-
gram in the verification range with values that were acquired
from an input device that is operated by the user. After that,
the program simulator 190 executes simulation from the pro-
cessing of calling the function that is earliest in the execution
order to the processing for returning from the function that is
the last in the execution order.

Similar to the test results information, this simulation
results information includes, for example, the execution time
of'the control program, ID information (in other words, mod-
ule ID) or name (in other words, module name) that identifies
a control module of the control program, or ID information
(in other words, function ID) or name (in other words, func-
tion name) that identifies the function of that control module,
and ID that identifies the process that is executed by the
control module. The execution time of the control module
includes the execution starting time and the execution ending
time, and the simulation results include the module ID or
module name of the control module, and the execution period
from the execution starting time when execution of the simu-
lation of the control module started until the execution ending
time when execution of the simulation ended. Moreover, the
verification results can further include the execution time and
the variable value of the control module during that execution
time.

After step S19, the information communicator 180 in FIG.
3 A receives test results information from the testing device
200 (step S20). After that, from the simulation results indi-
cated by the simulation results information generated in step
S19, or from the test results indicated by the test results
information received in step S20, and in the verification range
indicated by the verification range information acquired in
step S18, the operation analyzer 195 analyzes the control
module and the time at which simulation or testing was
executed for each function of that control module, the 1D
information or name that identifies the control module, 1D
information or names that identify the functions of the control
module, and ID information that identifies the processes
executed by the control module (step S21). Then, the display
controller 160 controls the LCD 100/ in FIG. 1B so as to
display the analysis results of step S21 (step S22), after which
execution of the control program generation process ends.

More specifically, the LCD 100% displays an analysis
results display screen FA1 as illustrated in FIG. 11B. The
analysis results display screen FA11in FIG. 11B has the execu-
tion time axis along the horizontal axis, and displays in order
from the top of the screen the function names “A” to “C”, and
function IDs “F0001” to “FO003” of the control module that
is executed in a first process that is generated by execution of
the control program, function names “D” to “F”, and function
IDs “F0004” to “F0006” of the control module that is
executed in a second process that is generated by execution of
the control program, and function names “G” and “H”, and
function IDs “F0007” and “FO008” of the control module that

20

25

30

40

45

14

is executed in a second process that is generated by execution
of the control program. In other words, function A that is
identified by the function ID “F0001” that is executed in the
first process, and function B that is identified by function ID
“F0002” that is executed in the second process indicate that
execution was started at the same time. The function names
and function IDs that are displayed on the analysis results
display screen FA1 can also be module names and module
1Ds.

Moreover, the operation analyzer 195 analyzes the execu-
tion time of the control modules and functions of the control
modules based on the time at which each function is executed.
Next, the operation analyzer 195 searches from the descrip-
tion information memory 140 in FIG. 3 for constraint infor-
mation that indicates a constraint imposed on the control
program, and object information that indicates the object on
which the constraint is imposed. After that, the operation
analyzer 195 calculates the total execution time of the func-
tions indicated by the found object information or the execu-
tion time of the control module, and determines whether or
not the calculated execution time violates the time constraint
that is indicated by the constraint information that was found
(in other words, whether the analyzed test execution time or
the simulation execution time is longer than the time con-
straint).

The display controller 160 then causes the LCD 100% to
display the analysis results display screen FA2 in FIG. 11C
that expresses the judgment results by the operation analyzer
195. The analysis results display screen FA2 in FIG. 11C,
similar to the analysis results display screen FA1 in FIG. 11B,
has an execution time axis along the horizontal axis. More-
over, the analysis results display screen FA2 in FIG. 11C
displays in order from the top of the screen the process ID
“P0001” that identifies the first process, and function name
“A” and function ID “F0001” of the control module that is
executed in the first process, the process ID “P0002” that
identifies the second process, and function name “D” and
function ID “F0004” of the control module that is executed in
the second process, and the process ID “P0003” that identifies
the third process, and function name “G” and function 1D
“F0007” of the control module that is executed in the third
process.

Moreover, the analysis results display screen FA2 displays
the testing execution times or simulation execution times that
are identified by the function IDs “F0001” to “F0008” under-
neath the function names. Particularly, function G that is
identified by function ID “F0007”, and function H that is
identified by function ID “FO008 are such that the time
constraint that is imposed on the total execution time of
function G and function His displayed underneath the respec-
tive test execution time or simulation execution time. Further-
more, the analysis results display screen FA2 uses balloon
text from the time constraint display to display the judgment
results from the operation analyzer 195 of whether or not the
total testing execution time or total simulation time for func-
tion G and function H violates the time constraint.

With this construction, by executing a plurality oftasks (in
other words, multiple processes) in parallel, it becomes pos-
sible for the user to easily know whether there will be mutual
interference between tasks such as deadlock that occurs when
a plurality of tasks control the same hardware.

With this construction it is possible to display time con-
straints that are imposed on the control program being gen-
erated, and the execution time of the control modules of the
control program regardless of the architecture of the control
program being generated. Therefore, it is easy for the
designer of the control program to know not only the program

US 9,176,490 B2

15

structure of the control program that controls hardware, but
also time constraints that are imposed on each control module
of the control program. Consequently, it is possible to effi-
ciently generate a new control program having high reliability
by reusing control modules and architecture that have already
been created and saved.

Moreover with this construction, the time constraints on
the execution time that are imposed on the control program
and the surplus time with respect to the time constraints are
displayed, so that the user is easily able to know whether or
not the control program being generated satisfies the time
constraints, and thus it is possible to efficiently generate a
control program. Furthermore with this construction, the time
required for testing execution or simulation execution of the
control program, and time constraints that are imposed on the
control program are displayed, so the user is able to easily
know whether or not the time constraints of the generated
control program are satisfied, and thus it is possible to effi-
ciently test the generated control program. Also with this
construction, whether or not the time required for testing
execution or simulation execution of the control program
violates the time constraints that are imposed on the control
program is displayed, so that the user is able to easily know
whether or not the generated control program violates the
time constraints, and thus it is possible to more efficiently test
the control program.

Furthermore with this construction, the program structure
of the control program is edited so that a standby module,
whose execution length is equal to the length of the surplus
time, is executed at either the start, middle or end of the
execution order of a plurality of control modules on which a
time constraint has been imposed, so that it is possible to
easily generate a control program having high reliability that
satisfies the time constraint.

Also with this construction, together with simulation of the
execution of a control program in the verification range, ID
information for a control module and the time at which simu-
lation of the control module is executed are displayed based
on the simulation results, so it is possible to easily check the
execution results of a control module in a short calculation
time.

Moreover with this construction, a control program, which
is a control program that controls a program that is used in a
selected domain, and that has one or more architecture pat-
terns that are in common with a control program that is
already used in the selected domain, is generated by connect-
ing one or more control modules that have already been used
in the selected domain. By generating a control program by
reusing architecture and control modules that have already
been used in the selected domain in this way, it is possible to
efficiently generate a control program, which has high reli-
ability and that controls hardware that is used in the selected
domain, in a short time and with few steps.

Furthermore with this construction, a control program is
generated based on reused architecture patterns, so that not
only is it possible to reuse a computer program such as a
control module, it is also possible to reuse basic design kno-
whow of program structure called an architecture pattern.

Of course it is possible to provide a device as a control
program generation device 100 that already has the construc-
tion for achieving the function of this embodiment, however,
by applying a program, it is also possible to have an existing
control program generation device function as the control
program generation device 100 of this embodiment. In other
words, by applying a control program for achieving all of the
functions of the control program generation device 100
described in the embodiment above such that a computer

10

15

20

25

30

35

40

45

50

55

60

65

16

(CPU and the like) that controls an existing control program
generation device can execute that program, it is possible to
cause that existing device to function as the control program
generation device 100 of this embodiment. The control pro-
gram generation method of this embodiment can also be
performed using the control program generation device 100.

Moreover, when the functions described above are
achieved by the OS (Operating System) taking charge, or
when the functions are achieved by the OS and applications
working together, it is possible to store only the portions other
than the OS on a medium and distribute those portions, or it is
possible to download those portions.

The method for distributing this kind of program is arbi-
trary, and for example, can be stored and distributed on a
recording medium such as CD-ROM or DVD-ROM, or can
be distributed by way of a communication medium such as
the Internet.

Furthermore, various embodiments and variations of the
present invention are possible without departing from the
broad spirit and range of the invention. Moreover, the
embodiments described above are for explaining the present
invention and do not limit the range of the claims. In other
words, the range of the present invention is as presented in the
claims and not the embodiments. Variations that are within
the range of the claims, or that are within a range that is
equivalent in significance to that of the present invention are
considered to be within the range of the present invention.

A preferred embodiment of the present invention was
described in detail above, however, the present invention is
not limited to the embodiment above, and various variations
ormodifications are possible within the range of the invention
as disclosed in the claims.

This application is based on Unexamined Japanese Patent
Application Kokai Publication No. 2010-181897 filed on
Aug. 16, 2010. The entire disclosure of Unexamined Japa-
nese Patent Application Kokai Publication No.2010-18197 is
incorporated in this specification by reference.

INDUSTRIAL APPLICABILITY

The present invention is applied to a control program gen-
eration device that generates a control program for control-
ling hardware such as equipment that is used in the building
field or home field.

DESCRIPTION OF REFERENCE NUMERALS

1 Control program generation system

100 Control program generation device

1002 CPU

1005 ROM

100c RAM

1004 Hard disk

100e Media controller

100/ LAN card

100g Video card

1002 LCD

100; Keyboard

100/ Mouse

110 Program editor

111 Execution time estimator

112 Surplus time calculator

113 Program structure editor

120 Architecture pattern library

130 Control program reuse library

140 Control program structure description language specifi-
cation library

US 9,176,490 B2

17

151 Domain selection information acquirer
152 Pattern selection information acquirer
153 Constraint information acquirer

154 Description information acquirer

155 Verification range information acquirer
160 Display controller

170 Program generator

180 Information communicator

190 Program simulator

195 Operation analyzer

200 Testing device

The invention claimed is:

1. A control program generation device, comprising:

a control module memory that stores a plurality of control
modules that control an operation of hardware;

a pattern information memory that stores a plurality of
pattern information that indicates an architecture pat-
tern, which is a program structure that is common with
architectures of control programs that are composed of
one or more of the plurality of control modules;

a pattern selection information acquirer that acquires pat-
tern selection information for selecting the stored pat-
tern information;

a constraint information acquirer that acquires constraint
information that indicates a time constraint that is
imposed on an execution time of a control program
including the architecture pattern that is indicated by the
pattern information selected according to the pattern
selection information, the constraint information further
indicating a constraint on a total execution time of a
plurality of control modules of the control program;

an execution time estimator that estimates an execution
time for each of the plurality of control modules on
which the constraint, which is indicated by the constraint
information for the total execution time, is imposed;

a surplus time calculator that calculates a surplus time with
respect to the constraint based on the constraint on the
total execution time that is indicated by the constraint
information, and the execution time that is estimated by
the execution time estimator;

a display controller that causes the architecture pattern
indicated by the selected pattern information, the pro-
gram structure of the control program including the
architecture pattern, the estimated execution times of the
control modules of the control program, the time con-
straint indicated by the acquired constraint information,
and the surplus time that is calculated by the surplus time
calculator to be correlated and displayed on a display;

a description information acquirer that acquires descrip-
tion information that describes changes to the program
structure of the control program;

a program structure editor that edits the program structure
of'the control program based on the acquired description
information; and

a program generator that generates a control program for
controlling hardware by connecting control modules
that are stored in the control module memory based on
the edited program structure.

2. The control program generation device according to

claim 1, wherein

the control module includes a standby module that does not
perform control of the hardware, nor performs control
that causes the hardware to wait; and

the program structure editor edits the program structure of
the control program so that a standby module, whose
length of an execution time is equal to a length of the
surplus time, is executed at either the beginning, middle

18

or end of an execution order of the plurality of control
modules, when the surplus time that is calculated by the
surplus time calculator is a positive value.

3. The control program generation device according to

5 claim 2, further comprising:

10

15

20

25

30

35

40

45

55

60

a verification range information acquirer that acquires veri-
fication range information that indicates a verification
range for verifying execution of the generated control
program;

a program execution simulator that simulates execution of
the generated control program in the verification range
that is identified by the acquired verification range infor-
mation; and

an analyzer that analyzes, from the simulation results of the
program execution simulator, ID information, which
identifies the control modules of the generated control
program, and time at which simulation was executed for
the control modules; wherein

the display controller performs control of the display so as
to display an analysis results from the analyzer.

4. The control program generation device according to the

claim 1, wherein

the pattern information memory stores a plurality of
domain information and pattern information, the
domain information indicating a domain, which is a
range in which the hardware is used, the pattern infor-
mation indicating an architecture pattern that is common
with the architectures of a plurality of control programs
that control a plurality of the hardware that is used in the
range, and the domain information and the pattern infor-
mation being correlated with each other; and further
comprises:

a domain selection information acquirer that acquires
domain selection information for selecting the stored
domain information; wherein

the pattern selection information acquirer acquires pattern
selection information for selecting stored pattern infor-
mation that is correlated with the domain information
that is selected according to the acquired domain selec-
tion information.

5. The control program generation device according to the

claim 2, wherein

the pattern information memory stores a plurality of
domain information and pattern information, the
domain information indicating a domain, which is a
range in which the hardware is used, the pattern infor-
mation indicating an architecture pattern that is common
with architectures of a plurality of control programs that
control a plurality of the hardware that is used in the
range, and the domain information and the pattern infor-
mation being correlated with each other;

the control program generation device further comprises a
domain selection information acquirer that acquires
domain selection information for selecting the stored
domain information; and

the pattern selection information acquirer acquires pattern
selection information for selecting stored pattern infor-
mation that is correlated with the domain information
that is selected according to the acquired domain selec-
tion information.

6. The control program generation device according to the

claim 3, wherein

the pattern information memory stores a plurality of
domain information and pattern information, the
domain information indicating a domain, which is a
range in which the hardware is used, the pattern infor-
mation indicating an architecture pattern that is common

US 9,176,490 B2

19

with architectures of a plurality of control programs that
control a plurality of the hardware that is used in the
range, and the domain information and the pattern infor-
mation being correlated with each other;

the control program generation device further comprises a
domain selection information acquirer that acquires
domain selection information for selecting the stored
domain information; and

the pattern selection information acquirer acquires pattern
selection information for selecting stored pattern infor-
mation that is correlated with the domain information
that is selected according to the acquired domain selec-
tion information.

7. A computer-readable recording medium on which a

20

a description information acquirer that acquires descrip-
tion information that describes changes to the program
structure of the control program;

a program structure editor that edits the program structure
ofthe control program based on the acquired description
information; and

a program generator that generates a control program for
controlling hardware by connecting control modules
that are stored in the control module memory based on
the edited program structure.

8. A control program generation method, comprising:

a pattern selection information acquisition step of acquir-
ing pattern selection information for selecting pattern
information that indicates an architecture pattern, which
is a program structure that is common with architectures

15 of a plurality of control programs that are composed of
one or more control module for controlling an operation
of hardware, from a plurality of pattern information that

control program generation program is recorded, the control
program generation program that causes a computer to func-
tion as:

a control module memory that stores a plurality of control

is stored in a pattern information memory;
a constraint information acquisition step of acquiring con-

modules that control an operation of hardware; 20 straint information that indicates a time constraint that is
a pattern information memory that stores a plurality of imposed on an execution time of a control program
pattern information that indicates an architecture pat- including the architecture pattern that is indicated by the
tern, which is a program structure that is common with pattern information selected according to the pattern
architectures of control programs that are composed of selection information, the constraint information further
one or more of the plurality of control modules; 25 indicating a constraint on a total execution time of a
a pattern selection information acquirer that acquires pat- plurahty ofp OerI. modules of the CO.erI. program,
tern selection information for selecting the stored pat- an execution time estimation step of estimating an execu-
tern information: tion time for each of the plurality of control modules on
a constraint information acquirer that acquires constraint Wthhth? constraint, which is 1n.dlcat.edb}{ the constraint
information that indicates a time constraint that is 30 information for the total execution time, is imposed;
imposed on an execution time of a control program a surplus time calculation step of calculating a surplus time
including the architecture pattern that is indicated by the with respect to the constraint based on the constraint on
pattern information selected according to the pattern the total execution time that is indicated by the constraint
selection information, the constraint information further 1nf0rmathn, agd the e?(ecutlon time that is estimated by
indicating a constraint on a total execution time of a 35 the execution fime estimator; .
plurality of control modules of the control program; a (ﬁsp.lay control step of causing th? archltegture patiern
an execution time estimator that estimates an execution indicated by the sfeli:lcted pattelzrn 1nforma.t 10111’ (;he prﬁ A
time for each of the plurality of control modules on gralrlr} structure o tlf contro %rogram. me 1ngfthe
which the constraint, which is indicated by the constraint architecture pattern, the estimated executiontimes ol the
information for the total execution time, is imposed; 40 conFrol. mgdules of the contr ol program, the time con-
a surplus time calculator that calculates a surplus time with str(aiulllt 1ndlci1ted.by ﬂllle a.cqullr edl cor(lis{)rauﬁt 1nf0r1m ation,
respect to the constraint based on the constraint on the anl ¢ le surp istlmet lat 1zca Zud?tel y(tl N surg.usltm?e
total execution time that is indicated by the constraint calculator to be correlated and displayed on a display;
information, and the execution time that is estimated by a description information acquisition step of acquiring
the executio,n time estimator 45 description information that describes changes to the
a display controller that causes the architecture pattern program structure of.the control program,
indicated by the selected pattern information, the pro- a program structure editing step of editing the program
gram structure of the control program including the structure of.the °°m?°1 program based on the acquired
architecture pattern, the estimated execution times of the description 1nfqrm ation; and .
50 a program generation step of generating a control program

control modules of the control program, the time con-
straint indicated by the acquired constraint information,
and the surplus time calculated by the surplus time cal-
culator to be correlated and displayed on a display;

for controlling hardware by connecting control modules
based on the edited program structure.

#* #* #* #* #*

